Компьютерная Энциклопедия

Накопитель на жёстких магнитных дисках

Накопи́тель на жёстких магни́тных ди́сках, НЖМД, жёсткий диск, винче́стер (англ. Hard (Magnetic) Disk Drive, HDD, HMDD ; в просторечии винт, хард, харддиск) — энергонезависимое перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных компьютерах.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образуемого у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках 5-10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков, головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Название «Винчестер»

По одной из версий название «винчестер» накопитель получил благодаря фирме 1973 году выпустила жёсткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» [1] предложил назвать этот диск «винчестером» [2] .

В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слов «винт» (наиболее употребимый вариант), «винч» и «веник».

Характеристики

Разобранный жёсткий диск Quantum fireball (модель 2001 года)

Интерфейс (англ. interface ) — набор, состоящий из линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил обмена. Современные накопители могут использовать интерфейсы Serial ATA, SAS, FireWire, Fibre Channel.

Ёмкость (англ. capacity ) — количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 2000 Гб. (2 Тб) В отличие от принятой в информатике (случайно) системе приставок, обозначающих кратную 1024 величину (кило=1024, мега=1 048 576 и т. д.; позже для этого были не очень успешно введены двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются кратные 1000 величины. Так, напр., «настоящая» ёмкость жёсткого диска, маркированного как «200 Гб», составляет 186,2 ГиБ. [3]

Физический размер (форм-фактор) (англ. dimension ) — почти все современные (2001—2008 года) накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках. Так же получили распространение форматы — 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в формфакторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time ) — время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик от 2,5 до 16 мс, как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс [4] ), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5 [5] ).

Скорость вращения шпинделя (англ. spindle speed ) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability ) — определяется как среднее время наработки на отказ (Mean Time Between Failures, MTBF). См. также: Технология SMART (S.M.A.R.T. (англ. Self Monitoring Analysing and Reporting Technology ) — технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя).

Количество операций ввода-вывода в секунду — у современных дисков это около 50 оп./сек при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии — важный фактор для мобильных устройств.

Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G-shock rating ) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate ):

  • Внутренняя зона диска: от 44,2 до 74,5 Мб/с
  • Внешняя зона диска: от 60,0 до 111,4 Мб/с

Объём буфера — буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных (2008 год) HDD он обычно варьируется от 8 до 32 Мб.

Производители

Большая часть всех винчестеров производятся всего несколькими компаниями: Seagate, Western Digital, Samsung, а также ранее принадлежавшим Hitachi. Fujitsu продолжает выпускать жёсткие диски для ноутбуков и 2001 году. Maxtor. В 2006 году состоялось слияние Seagate и Maxtor. В середине 1990-х годов существовала компания Conner, которую купила Seagate. В первой половине 1990-х существовала ещё фирма Micropolice, производившая очень дорогие диски premium-класса. Но при выпуске первых в отрасли винчестеров на 7200 об/мин ею были использованы некачественные подшипники главного вала, поставленные фирмой Nidek, и Micropolice понесла фатальные убытки на возвратах, разорилась и была на корню куплена той же Seagate.

Устройство

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок — пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика — окислов железа, марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с большим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (4200, 5400, 7200, 10 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин.

Читать далее  Что такое дисковод? Дисководы для компьютера и ноутбука

Устройство позиционирования головок состоит из неподвижной пары сильных, как правило неодимовых, постоянных магнитов и катушки на подвижном блоке головок.

Вопреки расхожему мнению, внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а так же при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.

Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются — на них формируются дорожки и секторы.

Ранние «винчестеры» (подобно дискетам) содержали одинаковое количество секторов на всех дорожках. На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон. Все дорожки одной зоны имеют одинаковое количество секторов. Однако, на каждой дорожке внешней зоны секторов больше, и чем зона ближе к центру, тем меньше секторов приходится на каждую дорожку зоны. Это позволяет добиться более равномерной плотности записи и, как следствие, увеличения ёмкости пластины без изменения технологии производства.

Границы зон и количество секторов на дорожку для каждой зоны хранятся в ПЗУ блока электроники.

Кроме того, в действительности на каждой дорожке есть дополнительные резервные секторы. Если в каком либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remaping ). Конечно, данные, хранившиеся в нём, скорее всего, будут потеряны, но ёмкость диска не уменьшится. Существует две таблицы переназначения: одна заполняется на заводе, другая в процессе эксплуатации.

Таблицы переназначения секторов также хранятся в ПЗУ блока электроники.

Во время операций обращения к «винчестеру» блок электроники самостоятельно определяет, к какому физическому сектору следует обращаться и где он находится (с учётом зон и переназначений). Поэтому со стороны внешнего интерфейса «винчестер» выглядит однородным.

В связи с вышеизложенным существует очень живучая легенда о том, что корректировка таблиц переназначения и зон может увеличить ёмкость жёсткого диска. Для этого существует масса утилит, но на практике оказывается, что если прироста и удаётся добиться, то незначительного. Современные диски настолько дёшевы, что подобная корректировка не стоит потраченных на это ни сил, ни времени.

Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управление шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнении принятого сигнала с образцами. При этом выбирается образец наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

Технологии записи данных

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них, изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи

На данный момент это всё ещё самая распространенная технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей — доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи

Метод перпендикулярной записи — это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных образцов — 15-23 Гбит/см², в дальнейшем планируется довести плотность до 60—75 Гбит/см².

Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи

Основная статья: Термоассистируемая магнитная запись

Метод тепловой магнитной записи (англ. Heat-assisted magnetic recording, HAMR ) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, но их плотность уже превышает 150 Гбит/см². Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 7,75 Тбит/см². [6] Широкого распространения данной технологии следует ожидать после 2010 года.

Читать далее  Как Сделать RAID Массив из 4-6 Жестких Дисков на Windows 7 или 10?

Сравнение интерфейсов

Пропускная способность, Мбит/с Максимальная длина кабеля, м Требуется ли кабель питания Количество накопителей на канал Число проводников в кабеле Другие особенности
Ultra

2 40/80 Controller+2Slave, горячая замена невозможна
FireWire/400 400 4,5 (при последовательном соединении до 72 м) Да/Нет (зависит от типа интерфейса и накопителя) 63 4/6 устройства равноправны, горячая замена возможна
FireWire/800 800 4,5 (при последовательном соединении до 72 м) Нет 63 4/6 устройства равноправны, горячая замена возможна
USB 2.0 480 5 (при последовательном соединении, через хабы, до 72 м) Да/Нет (зависит от типа накопителя) 127 4 Host/Slave, горячая замена возможна
Ultra-320

SAS 3000 8 Да Свыше 16384 горячая замена; возможно подключение

eSATA 2400 2 Да 1 (с умножителем портов до 15) 4 Host/Slave, горячая замена возможна

История прогресса накопителей

  • 1956 год — жесткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник, а общий объём памяти 50 вращавшихся в нем покрытых чистым железом тонких дисков диаметром с большую пиццу (610 мм) составлял около 4,4 мегабайт (5 миллионов 6-битных байт)
  • 1980 год — первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб
  • 1986 год — Стандарт 1991 год — Максимальная ёмкость 100 Мб
  • 1995 год — Максимальная ёмкость 2 Гб
  • 1997 год — Максимальная ёмкость 10 Гб
  • 1998 год — Стандарты UDMA/33 и ATAPI
  • 1999 год — IBM выпускает
  • 2002 год — Взят барьер адресного пространства выше 137 Гб (проблема 48-bit 2003 год — Появление 2005 год — Максимальная ёмкость 500 Гб
  • 2005 год — Стандарт Serial ATA 3G (или SATA II)
  • 2005 год — Появление
  • 2006 год — Применение перпендикулярного метода записи в коммерческих накопителях
  • 2006 год — Появление первых «гибридных» жёстких дисков, содержащих блок флэш-памяти
  • 2007 год — Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб
  • 2008 год — Seagate Technology LLC представляет накопитель емкостью 1,5 Тб [7]
  • 2009 год — Новые пластины позволили Seagate Technology LLC впервые в истории создать 2-терабайтный винчестер.
  • 2009 год — Компания Western Digital выпустила в продажу жёсткий диск объёмом 2 Тб [8]

Примечания

  1. Ружьё «Winchester Model 1894» широко известно как «Winchester 30-30» по названию используемого патрона «.30-30».
  2. http://www.ibm.com/ibm/history/exhibits/storage/storage_3340.html
  3. Medalist 545XE (англ.) . Seagate (17 августа 1994). Проверено 8 декабря 2008.
    В спецификации диска Medalist 545xe (Seagate ST3660A) заявлены параметры: форматированный объём 545,5 Мб и геометрия 1057 цилиндров×16 головок×63 сектора×512 байт в секторе = 545 513 472 байт. Однако заявленный объём 545,5 из геометрии получается только если её поделить на 1000×1000; при делении на 1024×1024 получается значение 520,2.
    Barracuda 7200.9 320 GB PATA hard drive (ST3320833A) (англ.) . Seagate. — закладка Technical Specifications. Проверено 8 декабря 2008.
    Другой пример: заявлен объём 320 Гб и количество доступных секторов 625 142 448. Однако если количество секторов умножить на их размер (512), то в результате получится 320 072 933 376. «320» отсюда получаются только делением на 1000³, при делении на 1024³ получается только 298.
  4. http://www.hitachigst.com/hdd/support/15k147/15k147.htm
  5. http://www.seagate.com/products/notebook/momentus.html
  6. http://www.citforum.ru/hardware/data/hdd_industry/
  7. http://www.ixbt.com/news/all/index.shtml?10/74/66
  8. Выпущен двухтерабайтный винчестерЛента.ру

См. также

  • Барьеры размеров жёстких дисков
  • AHCI

Ссылки

  • Seagate Powers Next Generation Of Computing
  • Энциклопедия жёстких дисков
  • Интерфейс SATA 3.0 близок к завершению
  • 50 лет жёстким дискам! iXBT
  • 25-терабайтный винчестер не за горами
  • Hitachi к 2009 году создаст HDD объёмом 4 терабайта
  • Hitachi рассчитывает к 2010 году выпустить винчестер объёмом 5 ТБ
  • Демонстрирующий работу жёсткого диска (видео)
  • Как продлить жизнь жёстким дискам, rlab.ru
  • Ultra DMA
  • Как выбрать жёсткий диск? Какие модели наиболее надёжны?
  • Доступные методы диагностики жёстких дисков
  • Звуки, издаваемые неисправными жёсткими дисками
  • Температура жёсткого диска — полезный источник информации

Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17-е изд. — М.: Вильямс, 2007. — С. 653—700. — ISBN 0-7897-3404-4

PersCom — Компьютерная ЭнциклопедияКомпьютерная Энциклопедия

Вы здесь: Главная Накопители на жёстких дисках

Архитектура ЭВМ

  • Базовая организация ЭВМ
  • Процессор
  • Память. Нижний уровень
  • Память. Верхний уровень
  • Ввод-вывод
  • Кодирование символов

Компоненты ПК

  • Устройства вывода информации
  • Процессоры
  • Системные платы
  • BIOS: базовая система ввода-вывода
  • Оперативная память
  • Накопители на жёстких дисках
  • Видеоадаптеры
  • Устройства оптического хранения данных
  • Аудиоустройства

Интерфейсы

Мини блог

  • Операционные системы
  • IT
  • Сетевые технологии

Самое читаемое

  • Арифметико логическое устройство (АЛУ)
  • Страничный механизм в процессорах 386+. Механизм трансляции страниц
  • Организация разделов на диске
  • Диск Picture CD
  • White Book/Super Video CD
  • Прямой доступ к памяти, эмуляция ISA DMA (PC/PCI, DDMA)
  • Карты PCMCIA: интерфейсы PC Card, CardBus
  • Таблица дескрипторов прерываний
  • Разъемы процессоров
  • Интерфейс Slot A

Накопители на жёстких дисках

Накопители на жестких дисках

Что такое жесткий диск

Подробности Родительская категория: Накопители на жестких дисках Категория: Общая информация

Накопитель на жестком диске многим кажется самым необходимым и в то же время загадочным компонентом компьютерной системы. Как известно, он предназначен для долгосрочного хранения данных, и последствия его выхода из строя зачастую оказываются катастрофическими. Предполагается, что данные на жестком диске будут храниться до тех пор, пока сам пользователь их не сотрет или не перепишет. Для правильной эксплуатации или модернизации компьютера необходимо хорошо себе представлять, что же это такое — накопитель на жестком диске.

Основными элементами накопителя являются несколько круглых алюминиевых или некристаллических стекловидных пластин. В отличие от гибких дисков (дискет) их нельзя согнуть; отсюда и появилось название жесткий диск (см. рисунок). В большинстве устройств они несъемные, поэтому иногда такие накопители называются фиксированными (fixed disk). Существуют также накопители со сменными дисками.

Устройство жёсткого диска

Примечание!

Накопители на жестких дисках обычно называют винчестерами. Этот термин появился в 1960-х годах, когда компания IBM выпустила высокоскоростной накопитель с одним несъемным и одним съемным дисками емкостью по 30 Мбайт. Этот накопитель состоял из пластин, которые вращались с высокой скоростью, и ‘‘парящих’’ над ними головок, а номер его разработки — 30-30. Такое цифровое обозначение совпало с обозначением популярного нарезного оружия Winchester, поэтому термин винчестер вскоре стал применяться в отношении любого стационарно закрепленного жесткого диска. Это типичный профессиональный жаргон; на самом деле подобные устройства не имеют с обычными винчестерами (т.е. с оружием) ничего общего.

Формфакторы

Подробности Родительская категория: Накопители на жестких дисках Категория: Формфакторы

Одним из краеугольных камней индустрии ПК была стандартизация; физические и электрические характеристики жестких дисков — тому свидетельство. Благодаря промышленным стандартам можно приобрести корпус (или систему) у одного производителя и установить в него накопитель от другого и при этом быть уверенным, что накопитель войдет в отсек, шурупы совпадут с предназначенными для них отверстиями, а кабели подойдут к разъемам. Промышленные стандарты обеспечивают взаимную совместимость различных корпусов, системных плат, кабелей и накопителей.

Интересно проследить историю принятия стандартных форм и размеров. В некоторых случаях один производитель создавал накопитель общепринятой формы, поддерживающий популярный протокол обмена данными, в то время как другие копировали или клонировали параметры этого накопителя, создавая продукты, физически или электрически совместимые с оригиналом. Но бывало и так, что различные комитеты или группы формировались для утверждения определенных промышленных стандартов, после чего всем компаниям предлагалось создавать продукты, им соответствующие.

С течением времени появилось несколько стандартных типов жестких дисков, обычно различающихся размером пластин. В таблице представлены типы жестких дисков, применявшихся в настольных и портативных компьютерах.

Формы и размеры жестких дисков

На данный момент в настольных компьютерах используются накопители шириной 3,5 дюйма, а в портативных — 2,5 дюйма и меньше. На смену накопителям формфактора 3,5 дюйма с интерфейсом Parallel ATA быстро приходят накопители с интерфейсом Serial ATA, которым оснащены все современные компьютеры. В то же время ноутбуки, в которых используются жесткие диски с интерфейсом Serial ATA, стали появляться на рынке относительно недавно. Это связано с тем, что количество наборов микросхем для ноутбуков, поддерживающих интерфейс SATA, крайне ограничено; подавляющее их большинство ограничивается поддержкой интерфейса PATA. При этом поддержка SATA часто была реализована с помощью дополнительного контроллера, интегрированного на системной плате, что отрицательно сказывалось как на цене, так и на энергопотреблении ноутбука. И только наборы микросхем серии 900 от компании Intel обзавелись SATA, а накопители SATA формфактора 2,5 дюйма доступны на рынке.

Принципы работы накопителей на жестких дисках

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с концентрических окружностей вращающихся магнитных дисков (дорожек), разбитых на секторы емкостью 512 байт (см. рисунок).

Дорожки и секторы накопителя на жестких дисках

В накопителях обычно устанавливается несколько дисковых пластин и данные записываются на обеих сторонах каждой из них. В большинстве накопителей есть по меньшей мере два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр (см. рисунок ниже). Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или приводе. Поэтому головки не могут перемещаться независимо друг от друга, т.е. двигаются только синхронно.

Жесткие диски вращаются намного быстрее, чем гибкие. Частота их вращения даже в большинстве первых моделей составляла 3600 об/мин (т.е. в 10 раз больше, чем в накопителе на гибких дисках) и до последнего времени была почти стандартом для жестких дисков. Но в настоящее время частота вращения жестких дисков возросла. Несмотря на то что скорость вращения может изменяться, современные устройства раскручивают пластины до 4200, 5400, 7200, 10000 и даже 15000 об/мин. Некоторые диски малых формфакторов с целью экономии электроэнергии раскручиваются всего до 4200 об/мин, в то время как высокоскоростные можно встретить в основном в рабочих станциях и серверах, где повышенная цена, а также дополнительный шум и тепловыделение не играют решающей роли. Высокая скорость вращения в сочетании со скоростным механизмом подачи головок и большим количеством секторов на дорожке — вот главные факторы, определяющие общую производительность жесткого диска.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка “столкнется” с диском, вращающимся “на полном ходу”. Если удар будет достаточно сильным, произойдет поломка головки. Последствия этого могут быть разными — от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные “взлеты” и “приземления” головок, а также более серьезные потрясения.

Цилиндр накопителя на жестких дисках

В некоторых современных накопителях вместо конструкции CSS (Contact Start Stop) используется механизм загрузки/разгрузки, который не позволяет головкам входить в контакт с жесткими дисками даже при отключении питания накопителя. Этот механизм впервые был использован в 2,5-дюймовых накопителях портативных компьютеров, для которых устойчивость к механическим воздействиям играет весьма важную роль. В механизме загрузки/разгрузки используется наклонная панель, расположенная непосредственно над внешней поверхностью жесткого диска. Когда накопитель выключен или находится в режиме экономии потребляемой мощности, головки съезжают на эту панель. При подаче электроэнергии головки разблокируются только тогда, когда скорость вращения жестких дисков достигнет нужной величины. Поток воздуха, создаваемый при вращении дисков (аэростатический подшипник), позволяет избежать возможного контакта между головкой и поверхностью жесткого диска.

Поскольку пакеты магнитных дисков содержатся в плотно закрытых корпусах и их ремонт не предусмотрен, плотность дорожек на них очень высока — до 96000 и более на дюйм (Hitachi Travelstar 80GH). Блоки HDA (Head Disk Assembly — блок головок и дисков) собирают в специальных цехах в условиях практически полной стерильности. Обслуживанием HDA занимаются считанные фирмы, поэтому ремонт или замена каких-либо деталей внутри герметичного блока HDA обходится очень дорого. Вам придется смириться с мыслью, что рано или поздно накопитель выйдет из строя, и вопрос только в том, когда это произойдет и успеете ли вы сохранить свои данные.

Внимание!

Вскрывать накопитель на жестких дисках в домашних условиях не рекомендуется. Некоторые производители накопителей конструктивно выполняют их таким образом, что при вскрытии обрывается защитная лента. Самостоятельно вскрыв накопитель, вы тем самым разрываете эту защитную ленту и лишаетесь гарантийных обязательств производителя.

Многие пользователи считают накопители на жестких дисках самыми хрупкими и ненадежными узлами компьютеров, и, вообще говоря, они правы. Однако во время проводимых мною семинаров по аппаратному обеспечению компьютеров и проблемам восстановления данных накопители практически постоянно работали со снятыми крышками. Иногда приходилось даже снимать и устанавливать на место крышки работающих накопителей, и несмотря на это они по сей день продолжают успешно работать и с крышками, и без них. Разумеется, я не советую вам делать то же самое со своими устройствами.

Основные компоненты жестких дисков

Существует множество типов накопителей на жестких дисках, но практически все они состоят из одних и тех же основных узлов. Конструкции этих узлов, а также качество используемых материалов могут различаться, но их основные рабочие характеристики и принципы функционирования одинаковы. Основные элементы конструкции типичного накопителя на жестком диске (см. рисунок ниже) перечислены ниже:

  • диски;
  • головки чтения/записи;
  • механизм привода головок;
  • двигатель привода дисков;
  • печатная плата со схемами управления;
  • кабели и разъемы;
  • элементы конфигурации (перемычки и переключатели).

Диски, двигатель привода дисков, головки и механизм привода головок обычно размещаются в герметичном корпусе, который называется HDA (Head Disk Assembly — блок головок и дисков). Обычно этот блок рассматривается как единый узел; его почти никогда не вскрывают. Прочие узлы, не входящие в блок HDA (печатная плата, лицевая панель, элементы конфигурации и монтажные детали), являются съемными.

Характеристики

Если вы решили купить новый накопитель или просто хотите разобраться, каковы различия между устройствами разных семейств, сравните их параметры. Ниже приведены критерии, по которым обычно оценивается качество жестких дисков:

Еще статьи.

  1. Достижения в развитии накопителей
  2. 5,25-дюймовые накопители
  3. Несколько слов о наглядных сравнениях
  4. Диски

Подкатегории

  • Характеристики накопителей на жестких дисках Кол-во материалов: 12
  • Основные компоненты жестких дисков Кол-во материалов: 14
  • Принципы работы накопителей на жестких дисках Кол-во материалов: 7
  • Общая информация Кол-во материалов: 2
  • Формфакторы Кол-во материалов: 6

Источник https://dic.academic.ru/dic.nsf/ruwiki/1054529

Источник https://perscom.ru/2012-02-27-19-40-33

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *