3.2. Системная плата. Шины, интерфейсы, архитектура материнской платы кратко

Архитектура системной платы реферат

Архитектура системной платы определяется набором микросхем (chipset) – это одна или несколько микросхем, таймеры, система управления специально разработанная для «обвязки» микропроцессора. Они содержат в себе контроллеры прерываний, прямого доступа к памяти, памятью и шиной – все те компоненты, которые в оригинальной IBM PC были собраны на отдельных микросхемах. Обычно в одну из микросхем набора входят также часы реального времени с CMOS-памятью и иногда – клавиатурный контроллер, однако эти блоки могут присутствовать и в виде отдельных чипов. В последних разработках в состав микросхем наборов для интегрированных плат стали включаться и контроллеры внешних устройств.

Внешне микросхемы Chipset’а выглядят, как самые большие после процессора, с количеством выводов от нескольких десятков до двух сотен.

Тип набора микросхем определяет основные функциональные возможности платы: типы поддерживаемых процессоров, структура/объем кэша, возможные сочетания типов и объемов модулей памяти, поддержка режимов энергосбережения, возможность программной настройки параметров и т.п. На одном и том же наборе может выпускаться несколько моделей системных плат, от простейших до довольно сложных с интегрированными контроллерами портов, дисков, видео и т.п.

Главными структурными элементами системной платы являются северный и южный мосты.

Северный мост служит для скоростной связи между процессором, оперативной памятью и видеоадаптером, подключенным к высокоскоростной шине (PCI-E или AGP).

Южный мост предназначен для связи с контроллерами портов и периферийных устройств. Также на южном мосте находится BIOS и контроллеры устройств ввода-вывода (I/O, Input/Output devices).

Мосты соединены между собой внутренней шиной, которая обеспечивает связь процессора с периферийными устройствами.

Рекомендуемые материалы

Структурная схема современной системной платы представлена на рис. 1.

Рис. 1. Структурная схема современной системной платы.

Шины ввода-вывода (XT, ISA, EISA, MCA, VESA, PCI).

Любая вычислительная машина обязательно включает в себя такие базовые компоненты как процессор – для проведения вычислительных операций или выполнения программ, запоминающие устройства – как для хранения промежуточной информации в процессе вычислений, так и для длительного хранения и перемещения информации в пространстве. Кроме того, каждая вычислительная машина конфигурируется периферийными устройствами для ввода и вывода информации. Несмотря на всю значимость указанных узлов вычислительной машины, не менее важным устройством является канал передачи данных от одного узла ЭВМ к другому – шина ввода/вывода.

Шины EISA и МСА являются интеллектуальными. В шинах и совместимых картах были предусмотрены аппаратные средства, позволяющие системе идентифицировать новые карты дополнительных устройств непосредственно при их подключении к шине. Аппаратные средства данных шин конфигурировались автоматически, обеспечивая, фактически, всеми любимый Plug-and-Play.

Шина VESA имеет несколько существенных ограничений, но исправно выполняет свои функции – высокоскоростная передача данных видеоконтроллеру. Но VESA использовалась только для этого и не являлась шиной ввода/вывода общего назначения. Следующая версия данного стандарта стала более надежной и универсальной, но тоже не получила широкого применения. Наиболее широко используемой стала шина PCI.

Шина PCI (Peripheral Component Interconnect) не имеет ограничений, присущих более ранним стандартам. К основным преимуществам шины можно отнести:

· Широкая сфера применения. Крупнейшие производители аппаратного обеспечения ПК стали развивать и продвигать стандарт PCI. Шина универсальна и используется не только для видеокарт, но и для других устройств.

· Стандартная тактовая частота. Локальная шина работает на тактовой частоте внешнего генератора процессора. В разных системах значение частоты может отличаться, поэтому при подключению адаптеров к локальной шине производителям приходилось предусматривать поддержку различных частот. Интерфейс PCI решает эту проблему, стабильно поддерживая тактовую частоту 33 МГц, и облегчает задачи производителей контроллеров.

· Интеллектуальность. Шина защищает жизненно важную связь между процессором и памятью и позволяет множеству устройств использовать локальную шину. Полная поддержка Plug-and-Play.

· Низкая стоимость по сравнению с другими шинами такого уровня.

Максимальная скорость передачи данных через шину PCI – 132 Мбит/с. Это позволяет эффективно использовать этот стандарт при работе в сети. В течение достаточно долгого времени производители обеспечивали совместимость своих ПК со старыми адаптерами за счет включения второй шины – обычно EISA или ISA. Наиболее распространенной конфигурацей были несколько слотов PCI для быстрого ввода/вывода и ISA для совместимости со старыми адаптерами. Однако в настоящее время стандарт ISA является сильно устаревшим и более не используется и не поддерживается производителями.

Сравнение и характеристики шин.

ISA (Industry Standard Architecture, архитектура промышленного стандарта) – основная шина на компьютерах типа PC AT (другое название – AT-Bus). Является расширением XT-Bus, разрядность – 16/24 (16 Мб), тактовая частота – 8 МГц, предельная пропускная способность – 5.55 Мб/с. Разделение IRQ также невозможно. Возможна нестандартная организация Bus Mastering, но для этого нужен запрограммированный 16-разрядный канал DMA. Конструктив – 62-контактный разъем XT-Bus с прилегающим к нему 36-контактным разъемом расширения.

EISA (Enhanced ISA, расширенная ISA) – функциональное и конструктивное расширение ISA. Внешне разъемы имеют такой же вид, как и ISA, и в них могут вставляться платы ISA, но в глубине разъема находятся дополнительные ряды контактов EISA, а платы EISA имеют более высокую ножевую часть разъема с дополнительными рядами контактов. Разрядность – 32/32 (адресное пространство – 4 Гб), работает также на частоте 8 МГц. Предельная пропускная способность – 32 Мб/с. Поддерживает Bus Mastering — режим управления шиной со стороны любого из устройств на шине, имеет систему арбитража для управления доступом устройств к шине, позволяет автоматически настраивать параметры устройств, возможно разделение каналов IRQ и DMA.

VLB (VESA Local Bus, локальная шина стандарта VESA) – 32-разрядное дополнение к шине ISA. Конструктивно представляет собой дополнительный разъем (116-контактный, как у MCA) при разъеме ISA. Разрядность – 32/32, тактовая частота – 25..50 МГц, предельная скорость обмена – 130 Мб/с. Электрически выполнена в виде расширения локальной шины процессора – большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации. Из-за этого возрастает нагрузка на выходные каскады процессора, ухудшается качество сигналов на локальной шине и снижается надежность обмена по ней. Поэтому VLB имеет жесткое ограничение на количество устанавливаемых устройств: при 33 МГц – три, 40 МГц – два, и при 50 МГц – одно, причем желательно интегрированное в системную плату.

PCI (Peripheral Component Interconnect, соединение внешних компонент) – развитие VLB в сторону EISA/MCA. Не совместима ни с какими другими, разрядность – 32/32 (расширенный вариант – 64/64), тактовая частота – до 33 МГц (PCI 2.1 – до 66 МГц), пропускная способность – до 132 Мб/с (264 Мб/с для 32/32 на 66 МГц и 528 Мб/с для 64/64 на 66 МГц), поддержка Bus Mastering и автоконфигурации. Количество разъемов шины на одном сегменте ограничего четырьмя. Сегментов может быть несколько, они соединяются друг с другом посредством мостов (bridge). Сегменты могут объединяться в различные топологии (дерево, звезда и т.п.). Самая популярная шина в настоящее время; используется также на компьютерах, отличных от IBM-совместимых. Разъем похож на MCA/VLB, но чуть длиннее (124 контакта). 64-разрядный разъем имеет дополнительную 64-контактную секцию с собственным ключом. Все разъемы и карты к ним делятся на поддерживающие уровни сигналов 5 В, 3.3 В и универсальные; первые два типа должны соответствовать друг другу, универсальные карты ставятся в любой разъем.

Существует также расширение MediaBus, введенное фирмой ASUSTek – дополнительный разъем содержит сигналы шины ISA.

Основные микросхемы IBM PC

Все интегральные микросхемы состоят из огромного множества микроскопических полупроводниковых транзисторов и других элементов радио цепей, которые составляют сложные схемы внутри корпуса микросхемы.

Базовой схемой всех упраляющих микросхем явлеятся схема RS – триггера, реализованного с помощью логических элементов И — НЕ или ИЛИ — НЕ с соответствующими обратными связями и позволяет хранить один бит цифровой информации.

Главной микросхемой PC является микропроцессор. Рядом с микропроцессором предусмотрено место для микросхемы 80X87, числового сопроцессора, или процессора числовых данных, с его специальными возможностями по выполнению очень быстрых (и с повышенной точностью) вычислений над числами с плавающей точкой.

Среди специализированных микросхем можно выделить генератор тактовых (или синхронизирующих) сигналов. В IBM PC АТ это микросхема 88248. В микросхеме генератора тактовых сигналов используется кварцевый кристалл в качестве точной основы для синхронизации. Генератор тактовых сигналов понижает частоту колебаний кристалла до частоты, требующейся компьютеру, и преобразует их в форму, приемлемую для использования другими компонентами схемы.

С генератором тактовых сигналов близко связана микросхема программируемого таймера, идентифицируемая номером 8253. Программируемый таймер может порождать другие сигналы синхронизации.

Некоторые компоненты компьютера могут обмениваться данными непосредственно через компьютерную память, без участия микропроцессора. Такой процесс называется прямым доступом к памяти (Bus Mastering). Имеется специальная микросхема, предназначенная для управления этим процессом, которая называется контроллером прямого доступа к памяти (номер микросхемы – 8237).

Прерывания контролируются специальной микросхемой 8259. В компьютерах прерывания поступают с различной степенью важности, и одной из задач контроллера прерываний является отслеживания их в порядке приоритетов.

К другим основным микросхемам относится микросхема программируемого интерфейса периферийных устройств (номер – 8255). Эта микросхема следит за работой некоторых из более простых периферийных устройств компьютера. Однако большинство периферийных устройств компьютера являются слишком сложными для того, чтобы они могли регулироваться простой обычной схемой. Для управления такими устройствами (дисковые накопители, монитор и т.д.) используются специальные контроллеры.

В лекции «Способы управления обменом данными» также много полезной информации.

Обычно на системной плате установлено только ПЗУ с системным (Main, System) BIOS, отвечающим за саму плату и контроллеры FDD, HDD, портов и клавиатуры; в системный BIOS практически всегда входит System Setup – программа настройки системы. Видеоадаптеры и контроллеры HDD с интерфейсом ST-506 (MFM) и SCSI имеют собственные BIOS в отдельных ПЗУ; их также могут иметь другие платы – интеллектуальные контроллеры дисков и портов, сетевые карты и т.п.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Архитектура материнских плат

В мире существует множество компьютеров различных фирм различающихся по сложности, назначению и т.д., основной частью которых является материнская плата. Материнская плата — основная плата персонального компьютера, её по — другому называют системной платой. Современная материнская плата ПК, как правило, включает в себя чипсет, осуществляющий взаимодействие центрального процессора с ОЗУ и основной оперативной памятью, с портами ввода/вывода, со слотами расширения PCI Express, PCI, а также, обычно, с USB, SATA и IDE/ATA. Большинство устройств, которые могут присоединяться к материнской плате, делают это с помощью одного или нескольких слотов расширения или сокетов, а некоторые современные материнские платы поддерживают беспроводные устройства, использующие протоколы IrDA, Bluetooth, или

Рис.1 Материнская плата стандарта ATX (модель MSI K7T266 Pro2)

Центральный микропроцессор – основная микросхема компьютера, в которой производятся все вычисления. Процессор на материнской плате закреплён в специальном гнезде, называемым сокетом.

архитектура IBM PC XT

12 Ч 11″–13″ (305 Ч 279–330 мм)

архитектура IBM PC AT (Desktop/Tower)

8,5″ Ч 10″–13″ (216 Ч 254-330 мм)

архитектура IBM PC XT (форм-фактор считается недействительным с 1996 г.)

12″ Ч 9,6″ (305 Ч 244 мм)

для системных блоков типов MiniTower, FullTower

для cистемных блоков типа Slim

12″ Ч 13″ (305 Ч 330 мм)

Читать далее  Разъём JFP1 на материнской плате – что подключать

11,2″ Ч 8,2″ (284 Ч 208 мм)

для системных блоков типа Tower и компактных Desktop

9,6″ Ч 9,6″ (244 Ч 244 мм)

имеет меньше слотов чем ATX, также возможно использование меньшего PSU

9″ Ч 11″–13″ (229 Ч 279–330 мм)

Western Digital, 1987

для системных блоков типа Slim

8″–9″ Ч 10″–11″ (203–229 мм Ч 254–279 мм)

для системных блоков типа Slim

8″–9″ Ч 10″-13,6″ (203–229 мм Ч 254–345 мм)

Предусмотрен AGP, лучшее охлаждение чем у LPX

9,6″ Ч 7,5″-9.6″ (244 Ч ?-244 мм)

разработан как замена для форм-фактора MicroATX

6,7″ Ч 6,7″ (170 Ч 170 мм)

VIA Technologies 2003

допускаются только 100 Вт блоки питания

VIA Technologies, 2004

12,8″ Ч 10,5″ (325 Ч 267 мм)

допускается до 7 слотов и 10 отверстий для монтажа платы

10,4″ Ч 10,5″ (264 Ч 267 мм)

допускается до 4 слотов и 7 отверстий для монтажа платы

8,0″ Ч 10,5″ (203 Ч 267 мм)

допускается 1 слот и 4 отверстия для монтажа платы

14″ Ч 16,75″ (355,6 Ч 425,4 мм)

для высокопроизводительных рабочих станций и серверов среднего уровня

используются для встраиваемых (embedded) систем

Все основные электронные схемы компьютера и необходимые дополнительные устройства включаются в материнскую плату, или подключаются к ней с помощью слотов расширения. Говорить о материнской плате в отдельности от всех остальных частей компьютера не возможно — это комплекс устройств, работающий как один организм.

1. Борзенко, А. IBM PC: устройство, ремонт, модернизация [Текст] / А. Борзенко // Журнал Компьютер Пресс. – 1995. – январь. – С. 52-55.

2. Аврин, С. Компьютерные артерии [Текст] / С. Аврин // Журнал Hard ‘n’ Soft. – 1994. – №6. – С. 29–33.

3. Фролов, А.В. Аппаратное обеспечение IBM PC [Текст] / А.В. Фролов, Г.В.Фролов // Журнал ДИАЛОГ-МИФИ. – 1992. – С. 202-206.

4. Скотт Мюллер Модернизация и ремонт ПК [Текст] / Скотт Мюллер //Журнал Вильямс. – 2007. – С. 241–443.

Гост

Системная (материнская, главная) плата (motherboard) – сложная многослойная печатная плата, которая является основой ПК и обеспечивает связь между всеми элементами.

Схема работы ПК

Рисунок 1. Схема работы ПК

Основными частями системной платы являются:

  • разъём ЦП;
  • разъёмы оперативной памяти (ОЗУ);
  • микросхемы чипсета;
  • загрузочное ПЗУ;
  • контроллеры шин и их слоты расширения;
  • контроллеры и интерфейсы периферийных устройств.

Системная плата вмонтирована в середине системного блока ПК.

Строение системной платы

Системная плата изготовлена из стекловолокна, состоит из нескольких листов, на которые наносятся контакты (печатная плата) и имеет многослойную структуру.

Системная плата крепится к стойке с помощью винтов.

Основные элементы, которые располагаются на системной плате:

  • процессор;
  • оперативная память;
  • набор управляющих микросхем (чипсет);
  • BIOS;
  • кэш-память;
  • шины;
  • слоты расширения;
  • батарейка и др.

Кроме того, на плате расположены разъемы для параллельных, последовательных портов (для подключения клавиатуры и мыши), источника питания, встроенного динамика, индикаторов и кнопок, которые находятся на передней панели системного блока. Тип системной платы определяет производительность ПК и перечень тех устройств, которые можно подключить.

Вид системной платы

Рисунок 2. Вид системной платы

Для передачи данных между устройствами системной платы используются шины: шина главного процессора, на которой работает ЦП и кэш-память, системная шина. Взаимодействие происходит через специальные устройства – контроллеры.

Готовые работы на аналогичную тему

Характеристики системной платы

Тип платы (форм-фактор). Форм-фактор системной платы – стандарт, который определяет ее размеры для ПК, места крепления, расположение на системной плате интерфейсов шин, портов ввода и вывода, разъёма ЦП, слотов для ОЗУ, тип разъема для подключения блока питания.

Современными форматами системных плат являются форматы ATX, Mini-ATX, microATX, Mini-ITX, BTX и др.

Питание зависит от разъема для блока питания.

Гнездо процессора определяет вид разъема, в который вставляется ЦП.

Количество слотов и их тип для оперативной памяти (от $2$ до $4$). Современные системны платы поддерживают память вид $DDR$, $DDR2$, $DDR3.$

Чипсет в современных ПК состоит из двух частей: северный мост и южный мост. Северный мост отвечает за связь с помощью шины с ЦП и оперативной памятью. Южный мост связывает северный мост с жестким диском, DVD-накопителем, картами расширения, USB и пр.

Дисковые контроллеры для дисковых накопителей (внутренних жестких дисков и DVD-накопителей:

  • IDE – разъем для внутренних жестких дисков;
  • FDD – разъем для гибких дисков;
  • SATA –разъем для внутренних жестких дисков и DVD-накопителей. Скорость передачи данных через данный интерфейс $3$ Гб/с. Используется в современных системных платах.

Разъемы на задней панели:

  • разъемы USB (версии $2.0$, иногда $3.0$);
  • видео (VGA или DMI);
  • PS/2 (для подключения мыши и клавиатуры);
  • сетевой интерфейс Ethеrnet для подключения к локальной сети ($RJ-45$);
  • аудио разъемы (для подключения наушников, микрофона, линейный вход).

Контроллер Bluetooth, который позволяет работать с беспроводной клавиатурой, мышью и другими устройствами, поддерживающими этот стандарт.

Слоты PCI для подключения карт с подсистемами (например, аудио, видеозахвата, Ethernet, модема и т.п.).

Слоты PCI-E $x16$ используются для высокотребовательных систем (например, видеокарты).

Переключатели и перемычки (джамперы) на системной плате используются для установки режимов работы платы. Джамперы более распространены, т.к. могут принимать более двух состояний в отличие от переключателей. Современные разработки системных плат заключаются в освобождении системных плат от переключателей и перемычек и передаче возможности переключения режимов работы платы на программное обеспечение. Такие системные платы называют свободными от перемычек.

Кроме указанных разъемов, на системной плате могут присутствовать дополнительные. Например, если есть интегрированная звуковая подсистема, то присутствует аудиоразъем для подключения к передней панели системного блока и дополнительный аудиовход, разъем ATAPI (белый).

Производителем системных плат в России является компания Формоза.

В начале XXI века мы не мыслим свою жизнь без компьютера. На сегодняшний день в мире существует множество компьютеров, гаджетов различных фирм, групп сложности, назначения и поколений — основной частью которых является материнская плата. В данном реферате мы рассмотрим структуру и дальнейшие тенденции развития материнских плат для персональных компьютеров.

Введение 2
Материнская плата (motherboard) 2
Классификация материнских плат по форм-фактору 3
Технологии энергосбережения 4
Определение модели 5
Микропроцессоры 5
Чипсет 6
Шина 8
ISA 10
EISA 11
VESA 11
PCI 12
Память 12
Заключение 17
Список литературы 18

Прикрепленные файлы: 1 файл

Реферат Информатика.docx

Материнская плата (motherboard) 2

Классификация материнских плат по форм-фактору 3

Технологии энергосбережения 4

Определение модели 5

Список литературы 18

Введение

В начале XXI века мы не мыслим свою жизнь без компьютера. На сегодняшний день в мире существует множество компьютеров, гаджетов различных фирм, групп сложности, назначения и поколений — основной частью которых является материнская плата. В данном реферате мы рассмотрим структуру и дальнейшие тенденции развития материнских плат для персональных компьютеров.

Основной частью любой компьютерной системы является материнская плата с главным процессором и поддерживающими его микросхемами. Иногда такая плата содержит всю схему компьютера (одноплатные). В противоположность одноплатным, в шиноориентированых компьютерах системная плата реализует схему минимальной конфигурации, остальные функции реализуются с помощью многочисленных дополнительных плат. Все компоненты соединяются шиной. В системной плате нет видеоадаптера, некоторых видов памяти и средств связи с дополнительными устройствами. Эти устройства (платы расширения) добавляются к системной плате путем присоединения к шине расширения, которая является частью системной платы.

Первая материнская плата была разработана фирмой IBM, и показанная в августе 1981 года (PC-1). В 1983 году появился компьютер с увеличенной системной платой (PC-2). Максимум, что могла поддерживать PC-1 без использования плат расширения- 64К памяти. PC-2 имела уже 256К, но наиболее важное различие заключалось в программировании двух плат. Системная плата PC-1 не могла без корректировки поддерживать наиболее мощные устройства расширения, таких, как жесткий диск и улучшенные видеоадаптеры.

Материнская плата (motherboard)

Материнская плата — сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера либо сервера начального уровня (центральный процессор, контроллер оперативной памяти и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода).

Именно материнская плата объединяет, координирует работу таких различных по своей сути и функциональности комплектующих, как процессор, оперативная память, платы расширения и всевозможные накопители.

Современная материнская плата ПК, как правило, включает в себя чипсет, осуществляющий взаимодействие центрального процессора с ОЗУ и основной оперативной памятью, с портами ввода/вывода, со слотами расширения PCI Express, PCI, а также, обычно, с USB, SATA и IDE/ATA. Большинство устройств, которые могут присоединяться к материнской плате, делают это с помощью одного или нескольких слотов расширения или сокетов, а некоторые современные материнские платы поддерживают беспроводные устройства, использующие протоколы IrDA, Bluetooth, или 802.11 (WI-Fi).

В общем случае материнские платы можно разделить по размерам на три группы. Раньше все материнские платы имели размеры 8,5/11 дюймов. В XT размеры увеличились на 1 дюйм в AT размеры возросли еще больше.

Сейчас часто речь может идти о “зеленых” платах (green mothrboard). Данные системные платы позволяют реализовать несколько экономичных режимов энергопотребления. Американское агентство защиты окружающей среды (EPA) сосредоточила свое внимание на уменьшении потребления энергии компьютерными системами. Оборудование, удовлетворяющее ее (EPA) требованиям должно в среднем ( в режиме холостого хода) потреблять не более 30Вт, не использовать токсичные материалы и допускать 100% утилизацию. Поскольку современные микропроцессоры используют напряжение питания 3,3-4В, на системных платах монтируют преобразователи напряжение (т.к. на плату подается 5В).

Классификация материнских плат по форм-фактору

Форм-фактор материнской платы — стандарт, определяющий размеры материнской платы для персонального компьютера, места её крепления к корпусу; расположение на ней интерфейсов шин, портов ввода/вывода, разъёма центрального процессора (если он есть) и слотов для оперативной памяти, а также тип разъема для подключения блока питания.

Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей.

Устаревшие: Baby-AT; Mini-ATX; полноразмерная плата AT; LPX.

Современные: ATX; microATX; FlexATX; NLX; WTX, CEB.

Внедряемые: Mini-ITX и Nano-ITX; Pico-ITX; BTX, MicroBTX и PicoBTX

Технологии энергосбережения

С постоянным увеличением популярности электронных приборов на протяжении ближайших 20-30 лет Евросоюз решил ввести эффективную стратегию для решения вопросов энергопотребления. Для этого были выпущены требования по энергоэффективности — ErP (Energy-related Products) и EuP (Energy Using Product). Стандарт разработан для определения энергопотребления готовых систем. По требованию ErP/EuP, система в выключенном состоянии должна потреблять менее 1 Вт энергии.

С пецификации ErP/EuP 2.0 намного строже первой версии. Для соответствия ErP/EuP 2.0 (вступит в действие в 2013 году) полное энергопотребление компьютера в выключенном состоянии не должно превышать 0,5 Вт.

Ultra Durable (версии 1, 2 и 3) — технология от Gigabyte, призванная улучшить температурный режим и надежность работы материнской платы, которая подразумевает:

  • Увеличенная (удвоенная) толщина медных слоев толщиной 70 мкм (2 унции/кв.фут) как для слоя питания, так и для слоя заземления системной платы снижает полное сопротивление платы на 50 %, что обеспечивает снижение рабочей температуры компьютера, повышение энергоэффективности и улучшение стабильности работы системы в условиях разгона.
  • Использование полевых транзисторов, обладающих пониженным сопротивлением в открытом состоянии (RDS(on)). Транзисторы преобразователей питания +12ATX выделяют относительно много тепла и, когда говорят об охлаждении подсистемы питания процессора, то подразумевают именно их.
  • Использование дросселей с ферритовым сердечником — помимо большей (по сравнению с традиционными моделями) устойчивостью к окислению, эти дроссели обеспечивают меньшие потери энергии и меньший уровень электромагнитного излучения.

Определение модели

Определить модель установленной материнской платы можно с помощью DMI или Cpu-Z. В Linux можно использовать утилиту dmidecode, в Windows — SIW или AIDA64.

Микропроцессоры

Архитектура материнской платы напрямую зависит от внешней архитектуры микропроцессора.

В 1976 году фирма Intel начала усиленно работать над микропроцессором 8086. Размер его регистров по сравнению с 8080 был увеличен в два раза, что дало возможность увеличить его производительность в 10 раз. Кроме того размер информационных шин был увеличен до 16 разрядов, что дало возможность увеличить скорость передачи информации на микропроцессор и с него в два раза. Размер его адресной шины также был существенно увеличен — до 20 бит. Это позволило 86-му прямо контролировать 1М оперативной памяти.

Читать далее  Материнские платы EATX и ATX: в чем разница и как выбрать?

В 1982 году Intel создала процессор 80286. Вместо 20-разрядной адресной шины 8088/8086, 80286 имел 24-разрядную шину. Эти дополнительные 4 разряда давали возможность увеличить максимум адресуемой памяти до 16 М.

Intel 80386 был создан в 1985 году. С увеличением шины данных до 32 бит, число адресных линий также было увеличено до 32. Само по себе это расширение позволило микpопpоцессоpу прямо обращаться к 4Гб физической памяти. Кроме того он мог работать с 16 триллионами байт виртуальной памяти. Существует модификация процессора Intel80386 — 386SX. Главное отличие его от 80386 это 16-битный вход/выход шины данных. Как следствие его внутренние регистры заполняются в два шага.

Все процессоры семейства 486 имеют 32-разрядную архитектуру, внутреннюю кэш-память 8 Кб (у DX4 — 16 КВ). Модели SX не имеют встроенного сопроцессора, он был вынесен на плату. Модели DX2 реализуют механизм внутреннего удвоения частоты (например, процессор 486DX2-66 устанавливается на 33-мегагерцовую системную плату), что позволяет поднять быстродействие практически в два раза, так как эффективность кэширования внутренней кэш-памяти составляет почти 90 процентов. Процессоры семейства DX4 486DX4-75 и 486DX4-100 предназначены для установки на 25-ти и 33-мегагерцовые платы.

Созданные в середине 1989 и 1995 года процессоры Pentium и Pentium Pro значительно отличались по своей архитектуре от своих проедшественников. В основу архитектуры была положена суперскалярная архитектура, которая и дала возможность получить пятикратное получение производительности Pentium по сравнению с моделью 80486. Хотя Pentium проектировался как 32-разрядный, для связи с осталными компонентами системы использовалась внешняя 64-разрядная шина.

Чипсет

Чипсет — интегрированный в материнскую плату набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Чипсет выполняет роль компонента, который обеспечивает общее функционирование подсистем памяти, ЦПУ, введения-вывода и другого.

Современные компьютеры содержат две микросхемы чипсета:

Северный мост (от англ. Northbridge) — один из основных элементов чипсета компьютера, отвечающий за работу с процессором, памятью и видеоадаптером. Северный мост определяет частоту системной шины, возможный тип оперативной памяти (в системах на базе процессоров Intel) (SDRAM, DDR, другие), её максимальный объем и скорость обмена информацией с процессором. Кроме того, от северного моста зависит наличие шины видеоадаптера, её тип и в северный мост нередко встраивают и графическое ядро. Во многих случаях именно северный мост определяет тип и быстродействие шины расширения системы (PCI,PCI Express, другое). Северный мост в значительной степени влияет на то, до какой степени может быть разогнан компьютер, поскольку используемая им частота является базовой для частоты работы процессора. В современных системах, когда компьютер становится быстрее, чип всё более нагревается. Поэтому на сегодняшний день нередко используются различные типы охлаждения северного моста, например радиаторы или кулеры.

Опционально южный мост также может включать в себя поддержку,RAID контроллера, контроллера USB, контроллера Fire Wire и аудио-кодек.

Компьютерная шина — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. В связи с этим разделяется механический, электрический (физический) и логический (управляющий) уровни.

При логической структуре у компьютера имеется одна шина для соединения центрального процессора, памяти и устройств ввода-вывода, однако большинство систем содержат две и более шин. Каждое устройство ввода-вывода состоит из двух частей: одна из них содержит большую часть электроники и называется контроллером, а другая представляет собой само устройство ввода-вывода, например дисковод. Контроллер обычно содержится на плате, которая втыкается в свободный разъем. Исключение представляют контроллеры, являющиеся обязательными (например, клавиатура), которые иногда располагаются на материнской плате. Хотя дисплей (монитор) и не является факультативным устройством, соответствующий контроллер иногда располагается на встроенной плате, чтобы пользователь мог по желанию выбирать платы с графическими ускорителями или без них, устанавливать дополнительную память и т. д. Контроллер связывается с самим устройством кабелем, который подсоединяется к разъему на задней стороне корпуса.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Материнская плата является основой системного блока. Материнская плата содержит все необходимые компоненты для всей системы: слоты, процессоры, платы расширения, транзисторы и многое другое.

Материнская плата (Мб, также используется название материнской платы; разговорно — материнская, материнская, материнская плата) — это сложная многослойная печатная плата, на которой установлены основные компоненты персонального компьютера или сервера начального уровня (процессор, контроллер оперативной памяти и сама оперативная память, загрузка ПЗУ, базовые контроллеры интерфейса ввода/вывода). Именно материнская плата унифицирует и координирует работу таких разнообразных по своей природе и функциональности компонентов, как процессор, оперативная память, платы расширения и все типы устройств хранения данных.

Основные компоненты

Основные компоненты, установленные на материнской плате:

Northbridge, MCH (Memory Controller Hub), System Controller — обеспечивает подключение ЦПУ к узлам по высокопроизводительным шинам: оперативной памяти, графическому контроллеру

Такие шины FSB, как HyperTransport и SCI, можно использовать для подключения ЦП к панели управления.

Обычно оперативная память подключается к системному контроллеру. В данном случае он содержит контроллер памяти. Таким образом, тип используемого системного контроллера обычно определяет максимальный объем оперативной памяти и пропускную способность шины памяти персонального компьютера. Однако в настоящее время наблюдается тенденция встраивания контроллера оперативной памяти непосредственно в процессор (например, в AMD K8 и Intel Core i7 контроллер памяти встроен в процессор), что упрощает функции системного контроллера и снижает тепловыделение.

PCI Express используется как шина для подключения графического контроллера на современных материнских платах. Ранее использовались обычные шины (ISA, VLB, PCI) и AGP.

Обычно северный и южный мосты проектируются как отдельные МИСС, но есть и типичное решение. Именно системная логика определяет все важные функции материнской платы и определяет, какие устройства могут быть к ней подключены.

ОЗУ (также ОЗУ, ОЗУ). Каждая ячейка оперативной памяти имеет свой индивидуальный адрес. ОЗУ передает данные непосредственно в процессор или через кэш-память. ОЗУ изготавливается как отдельное устройство; его также можно включить в конструкцию однокристального компьютера или микроконтроллера в качестве ОЗУ.

POST (аппаратные средства)

Загрузка из ПЗУ. Сохраняет программное обеспечение, которое выполняется сразу после включения питания. Обычно загрузочное ПЗУ содержит BIOS, но может содержать и программное обеспечение, работающее в EFI.

Форм-фактор (технология)

Форм-фактор материнской платы — стандарт, определяющий размер материнской платы для персонального компьютера, где она будет установлена в шасси, расположение интерфейсов шины, портов ввода/вывода, слотов процессора (если есть) и оперативной памяти, а также тип подключения блока питания.

Форм-фактор имеет (как и любой другой стандарт) рекомендательный характер. В спецификации форм-фактора указаны обязательные и необязательные компоненты. Однако подавляющее большинство производителей предпочитают следовать спецификации, поскольку стоимость соответствия существующим стандартам — это совместимость материнской платы и стандартизированного оборудования (периферийных устройств, плат расширения) от других производителей.

Устаревшие: Baby AT; Mini ATX; Полноразмерная плата AT; LPX.

Современный: ATX; microATX; FlexATX; NLX; WTX, CEB.

Выполнено: Mini-ITX и Nano-ITX; Pico-ITX; BTX, MicroBTX и PicoBTX.

Компьютерные форм-факторы по шкале от менее до более.

Жесткие диски

Шесть стандартных размеров жестких дисков, которые развивались в процессе их разработки.

Новички, решившие самостоятельно собрать компьютер, очень часто сталкиваются с такой проблемой: они купили компоненты, а почему-то, молчаливо выражаясь, компоненты вообще не подходят друг другу, а если и подходят, то не хотят работать вместе, как зло.

На рисунке ниже показан вид сверху одной из стандартных материнских плат. Он показывает все основные компоненты, которые вы можете найти на современной материнской плате.

Заключение

Разумеется, следует понимать, что расположение компонентов и набор определенных функций могут существенно отличаться в зависимости от модели материнской платы.

В более старых моделях, например, используется 20-контактный разъем, а с начала 2003 года на материнскую плату подается питание от блока питания через 24-контактный разъем Extended ATX (12).

Это стало необходимым для поддержки появления видеокарт PCIe, потребляющих до 75 Вт от интерфейса материнской платы. Среди прочего, самые производительные PCIe видеокарты также дополнительно получают питание непосредственно от блока питания через шестиштырьковый кабель. Сегодня графические карты серии nVidia 8800 и ATi/AMD 2900 работают по одному и тому же принципу.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также:

  • Нечеткий логический вывод реферат
  • Реферат на тему мудрость
  • Производство ампулированных растворов реферат
  • Печатающие устройства принтеры плоттеры графопостроители реферат
  • Управление системами и процессами реферат

3.2. Системная плата. Шины, интерфейсы, архитектура материнской платы кратко

На системной плате располагаются одна или несколько интегральных микросхем. Они управляют коммуникациями между процессором, памятью и устройствами ввода-вывода. Их называютсистемным набором микросхем (chipset).

Наибольшим спросом среди микросхем пользуются Intel 440LX, Intel 440ВХ. Самым крупным производителем системных плат является фирма Intel, которая ввела большинство технологических и технических новшеств для системных плат. Однако изделия фирмы Intel недешевы.

Непосредственно на системной плате находится системная шина, которая предназначена для передачи информации между процессором и остальными компонентами ПК. С помощью шины происходит как обмен информацией, так и передача адресов, служебных сигналов.

В IBM PC-совместимых компьютерах вначале использовалась 16-разрядная шина, работающая с тактовой частотой 8 МГц. После появления новых микропроцессоров и высокоскоростных периферийных устройств был предложен новый стандарт – шина МСА с более высокой тактовой частотой. Она содержала функции арбитража, позволяющие избегать конфликтных ситуаций при совместной работе нескольких устройств. В этой шине увеличена пропускная способность и достигнута большая компактность, а разрядность шины МСА-16 и 32.

3.2. Системная плата. Шины, интерфейсы, архитектура материнской платы

В 1989 г. была разработана шина EISA, фактически ставшая надстройкой ISA. Данная шина применялась в основном в высокопроизводительных серверах и профессиональных рабочих станциях, предъявляющих высокие требования к быстродействию.

Чтобы увеличить производительность системы, с 1991 г. стали использовать так называемые локальные шины. Они связывали процессор непосредственно с контроллерами периферийных устройств и тем самым увеличивали общее быстродействие ПК. Среди локальных шин наибольшей известностью пользуется шина VL-bus, которая была ориентирована на ПК с микропроцессорами семейства i486, хотя может также работать и с процессорами Pentium.

Процессорно-независимая шина PCI работает с тактовой частотой 33 МГц и обладает высокой скоростью передачи данных. Специально для этой шины выпущены многие адаптеры периферийных устройств – видеоплаты, контроллеры дисков, сетевые адаптеры и др.

Для работы с графическими и видеоданными разработали шину AGP, более быструю, чем PCI. Шина AGP напрямую соединяет графический адаптер с оперативной памятью ПК, а это очень важно при работе с видео-, двух– и трехмерными приложениями; функционирует она на частоте 66 МГц.

Периферийные устройства подключаются к системной шине с помощью контроллеров или адаптеров. Адаптеры представляют собой специальные платы, различные для разных типов периферийных устройств.

3.2. Системная плата. Шины, интерфейсы, архитектура материнской платы

Рис. структурная схема материнской(системной) платы. Северный и южный мост ы

История

До изобретения микропроцессоров цифровой компьютер состоял из нескольких печатных плат в корпусе картотеки с компонентами, соединенными объединительной платой, набором соединенных между собой разъемов. В очень старых разработках медные провода соединяли контакты разъема карты, но вскоре стандартной практикой стало использование печатных плат. Центральный процессор (ЦП), память и периферийные устройства были размещены на отдельных печатных платах, которые были подключены к задней панели. Широко распространенная шина S-100 1970-х годов является примером такого типа систем объединительной платы.

Самые популярные производители компьютеров 1980-х годов, такие как Apple и IBM, публиковали принципиальные схемы и другую документацию, которая позволяла производить быструю обратную разработку и замену материнских плат сторонних производителей. Обычно предназначенные для создания новых компьютеров, совместимых с образцами, многие материнские платы предлагали дополнительную производительность или другие функции и использовались для обновления оригинального оборудования производителя.

В конце 1980-х и начале 1990-х годов стало экономически целесообразным переносить все увеличивающееся количество периферийных функций на материнскую плату. В конце 1980-х годов материнские платы для персональных компьютеров стали включать одиночные ИС (также называемые микросхемами Super I/O), способные поддерживать набор низкоскоростных периферийных устройств: клавиатуры, мыши, дисковода гибких дисков, последовательных и параллельных портов. К концу 1990-х годов многие материнские платы для персональных компьютеров включали встроенные функции аудио, видео, хранения и сетевых функций потребительского уровня без необходимости использования каких-либо плат расширения; высококлассные системы для 3D-игр и компьютерной графики, за исключением видеокарты, обычно сохраняется на материнской плате. Об этом говорит сайт https://intellect.icu . Корпоративным ПК, рабочим станциям и серверам, скорее всего, потребуются карты расширения либо для более надежных функций, либо для более высоких скоростей.

Читать далее  5 лучших материнских плат MSI

Лэптопы, разработанные в 1990-х годах, объединяли самые распространенные периферийные устройства. Они даже включали в себя материнские платы без обновляемых компонентов, и эта тенденция сохранится даже тогда, когда будут изобретены более мелкие устройства (например, планшеты и нетбуки).

3.2. Системная плата. Шины, интерфейсы, архитектура материнской платы

Материнская плата Dell T3600

Эволюция материнских плат IBM PC-совместимых компьютеров

  • Первая модель IBM PC содержала на материнской плате минимум устройств: процессор, математический сопроцессор, ОЗУ, ПЗУ с BIOS, шину ISA, контроллер клавиатуры и служебную логику. Память была набрана отдельными микросхемами, вставленными в панели, а вся служебная логика была построена на микросхемах малой степени интеграции. Изменение конфигурации осуществлялось перемычками либо DIP-переключателями. Кроме слотов расширения ISA на плате имелись лишь разъемы для подключения клавиатуры и магнитофона. Все прочие устройства (видеоадаптер, контроллер гибких и жестких дисков, COM и LPT — портов) располагались на платах расширения;
  • С появлением IBM PC/AT размер платы и положение точек крепления было стандартизировано как «форм-фактор AT». От разъема магнитофона было решено отказаться, так как этот способ хранения данных оказался для ПК бесперспективным. На плате появились часы реального времени и энергонезависимая память, куда были перенесены часть функций настройки системы.
  • По мере набора популярности архитектурой IBM PC для взаимодействия процессора с другими компонентами компьютера начали изготавливаться специализированные микросхемы, называемые чипсетом. Это позволило снизить стоимость материнских плат и одновременно перенести на них часть функций, ранее работавших через платы расширения — контроллеры дисков, коммуникационных портов и т. д.
  • Для повышения надежности, облегчения апгрейда и экономии места на материнской плате микросхемы ОЗУ начали объединять в модули, которые устанавливались на плату вертикально — сначала это были SIPP — модули, которые однако оказались недостаточно надежными и вскоре были вытеснены SIMM, а затем — DIMM.
  • По мере роста производительности процессоров росло энергопотребление и соответственно тепловыделение. Поздние модели процессоров 80486 уже требовали активного охлаждения, которое должно крепиться к материнской плате. С целью снижения потребления энергии логические уровни, а следовательно и напряжение питания процессора, были снижены сначала до 3,3В, а потом еще ниже — вплоть до напряжений около вольта. Для обеспечения столь низкого напряжения требуется располагать вторичный источник питания (так называемый VRM, англ. Voltage regulator module — модуль регулятора напряжений) в непосредственной близости от процессора на материнской плате.
  • С 1995 года стандарт ISA начал вытесняться более совершенной шиной PCI. Однако, вскоре пропускной способности этой шины уже не хватало для работы высокопроизводительных видеокарт, и специально для этого в 1996 году был разработан порт AGP, который устанавливался на материнские платы одновременно с разъемами PCI и иногда даже ISA.
  • К середине 1990-х стандарт материнской платы AT устарел, и ему на смену должен был прийти разработанный в 1995 году новый стандарт ATX. Однако из-за того, что он был несовместим с AT по корпусу и блоку питания, платы типа AT продолжали выпускаться до конца 1990-х. Новый стандарт включал выводы управления блоком питания на питающей колодке. Также на корпусе должной быть прямоугольное окно для дополнительных разъемов, которая закрывается заглушкой, поставляемой в комплекте с материнской платой — количество и расположение разъемов в этой зоне не регламентируется ограничено только ее геометрическими размерами.
  • В 1995 году был разработан стандарт USB, однако на материнские платы он стал встраиваться только в конце 1990-х — отчасти благодаря фирме Apple, которая в то время продавала хоть и несовместимые с x86 компьютеры, но поспособствовала разработке периферийных устройств под новый порт. В результате, стандарты ATX и USB получили широкое распространение практически одновременно в начале 2000-х: практически все материнские платы стандарта ATX поддерживали USB, в то время как платы стандарта AT — как правило нет.
  • разъемы процессора вплоть до Socket 7 были универсальными — позволяли устанавливать в них процессоры одного поколения как от Intel, так и от AMD и Cyrix. В дальнейшем Intel и AMD стали изготавливать процессоры, несовместимые друг с другом механически и электрически.
  • Процессор Pentium II и некоторые другие распаивались на отдельной плате вместе с кэшем и устанавливались в специальный разъем вертикально, как карты расширения, однако в дальнейшем такая компоновка распространения не получила и встречается в основном на промышленных и встроенных компьютерах.
  • По мере роста производительности процессоров и видеокарт, их энергопотребление также росло, из-за чего на материнских платах начали появляться дополнительные разъемы для питания процессора. Для повышения стабильности и снижения пульсаций преобразователи напряжения для питания процессора и других компонент стали выполнять многофазными.
  • С середины 2000-х годов разъем ATA начинает вытесняться разъемом SATA (некоторое время существуя параллельно). Разъем SATA значительно компактнее и на материнской плате их размещают до десятка, иногда и больше. Только вместе с разъемом IDE уходят и разъемы для флоппи-дисков, которые продолжали использоваться, несмотря на то, что их объема было недостаточно уже для начала 90-х.
  • Также с середины 2000-х начали появляться материнские платы на шине PCI Express, призванной заменить как PCI, так и AGP. И если AGP была вытеснена довольно быстро, то для PCI было изготовлено достаточно большое количество устройств, поэтому разъемы PCI (а иногда даже ISA) продолжают иногда устанавливаться на материнские платы спустя больше десятка лет после появления PCI Express.
  • Также с целью снижения шума при малых нагрузках и увеличения эффективности при больших, материнские платы стали оснащаться термодатчиками и цепями управления вентиляторами. Также термодатчики стали встраивать непосредственно в процессоры. Особенно важно это было энтузиастам оверклокинга.
  • Если ранее обновление BIOS было возможно только с использованием программатора, то с середины 2000-х появилась возможность обновления напрямую из операционной системы, что давало больше возможностей для оверклокинга, а также позволяло исправлять ошибки в BIOS.
  • В 2013 году был представлен новый формат карт расширения — M.2. Такие карты имеют небольшой размер и устанавливаются на материнскую плату горизонтально. В основном карты формата M.2 используется для высокоскоростных SSD-накопителей и адаптеров Wi-Fi-сетей. Главное преимущество карт M.2 для SSD-накопителей — возможность использования протокола NVMe вместо AHCI, что позволяет значительно увеличить как скорость последовательного, так и случайного чтения/записи за счет распараллеливания. Кроме того, SSD-карты формата M.2 устанавливаются на плату, не требуя дополнительных кабелей и креплений, что может очень удобно в малогабаритных сборках.
  • В конце 2010-х в моду входят ПК с прозрачной стенкой корпуса для демонстрации его содержимого. Производители материнских плат стали наносить на платы шелкографию, устанавливать радиаторы вычурной формы, предназначенные не только для рассеивания тепла, но и часто чисто в декоративных целях. Также материнские платы для энтузиастов могут оснащаться декоративной подсветкой.
  • Также в 2010-х годах стали набирать популярность миниатюрные материнские платы стандартов microATX и mini-ITX для сборки высокопроизводительных систем в компактном корпусе.

Обычные компоненты материнской платы компьютера

В качестве основных (несъемных) частей материнская плата имеет:

  • разъем процессора (ЦПУ),
  • разъемы оперативной памяти (ОЗУ),
  • микросхемы чипсета (подробнее см. северный мост , южный мост),
  • загрузочное ПЗУ,
  • контроллеры шин и их слоты расширения,
  • контроллеры и интерфейсы периферийных устройств.

Материнская плата с сопряженными устройствами монтируется внутри корпуса с блоком питания и системой охлаждения, формируя в совокупности системный блок компьютера.

Классификация материнских плат по форм-фактору

Форм-фактор (техника)

Форм-фактор материнской платы — стандарт, определяющий размеры материнской платы для компьютера, места ее крепления к шасси; расположение на ней интерфейсов шин, портов ввода-вывода, разъема процессора, слотов для оперативной памяти, а также тип разъема для подключения блока питания.

Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей (что имеет ключевое значение для снижения стоимости владения, англ. TCO).

  • Устаревшими являются форматы: Baby-AT; полноразмерная плата AT; LPX; BTX, MicroBTX и PicoBTX.
  • Современные и массово применяемые форматы: ATX; microATX; Mini-ITX.
  • Внедряемые форматы: Nano-ITX; Pico-ITX; FlexATX; NLX; WTX, CEB.

Существуют материнские платы, не соответствующие никаким из существующих форм-факторов (см. таблицу). Это принципиальное решение производителя, обусловленное желанием создать на рынке несовместимый с существующими продуктами «бренд» (Apple, Commodore, Silicon Graphics, Hewlett-Packard, Compaq чаще других игнорировали стандарты) и эксклюзивно производить к нему периферийные устройства и аксессуары.

Предназначение компьютера (бизнес, персональный, игровой) в значительной степени влияют на выбор поставщика материнской платы.

  • Для нужд SOHO или предприятия выгоднее приобретение готового компьютера (или решения, например, «клиент-сервер» или блейд-сервер с закупкой или лизингом готового решения).
  • Для персонального пользования в качестве основного устройства позиционируется портативный компьютер . Материнские платы ноутбуков существенно отличаются от материнских плат настольных компьютеров: для сокращения габаритов компьютера в плату оригинальной схемотехники встраивается (интегрируется) множество отдельных периферийных плат (например, встраивается видеокарта) — это обеспечивает компактные габариты и низкое энергопотребление ноутбука, но приводит к меньшей надежности, проблемам с теплоотводом, значительному увеличению стоимости материнских плат, а также отсутствию взаимозаменяемости.

Таким образом, покупка отдельной материнской платы обоснована созданием компьютера «особой» конфигурации, например, малошумного или игрового.

Определение модели

Определить модель установленной материнской платы можно

  • визуально, с помощью заводских этикеток и надписей на плате
  • с помощью программного инструментария типа DMI
  • программно, с помощью утилиты типа CPU-Z. В Linux можно использовать утилиту dmidecode, в Windows — SIW или AIDA64

Технологии энергосбережения

Повышенное внимание к «зеленым» технологиям, требующим энергосберегающих и экологически безопасных решений, и обеспечение важных для материнских плат характеристик, вынудило многие компании-производители разрабатывать различные решения в этой области.

С постоянным увеличением популярности электронных приборов на протяжении ближайших 20—30 лет Евросоюз решил ввести эффективную стратегию для решения вопросов энергопотребления. Для этого были выпущены требования по энергоэффективности — ErP (Energy-related Products) и EuP (Energy Using Product). Стандарт разработан для определения энергопотребления готовых систем. По требованию ErP/EuP, система в выключенном состоянии должна потреблять менее 1 Вт мощности.

Спецификации ErP/EuP 2.0 намного строже первой версии. Для соответствия ErP/EuP 2.0 (вступила в действие в 2013 году) полное энергопотребление компьютера в выключенном состоянии не должно превышать 0,5 Вт.

  • EPU Engine
  • Ultra Durable (версии 1, 2 и 3) — технология от Gigabyte , призванная улучшить температурный режим и надежность работы материнской платы, которая подразумевает:
    • Увеличенная (удвоенная) толщина медных слоев толщиной 70 мкм (2 унции/фут²) как для слоя питания, так и для слоя заземления системной платы снижает полное сопротивление платы на 50 %, что обеспечивает снижение рабочей температуры компьютера, повышение энергоэффективти и улучшение стабильности работы системы в условиях разгона.
    • Использование полевых транзисторов, обладающих пониженным сопротивлением в открытом состоянии (RDS(on)). Транзисторы преобразователей питания +12 вольт выделяют относительно много тепла и, когда говорят об охлаждении подсистемы питания процессора, то подразумевают именно их.
    • Использование дросселей с ферритовым сердечником — эти дроссели обеспечивают меньшие потери энергии и меньший уровень электромагнитного излучения.
    • Использование бессвинцового припоя.
    • Повторное использование и картона и пластика упаковки.

    Вау!! Ты еще не читал? Это зря!

    • неисправности материнской платы , оборудование для диагностики материнки , блок-схема ремонта материнской платы , ремонт материнки ,
    • Barebone, баребон

    Пожалуйста, пиши комментарии, если ты обнаружил что-то неправильное или если ты желаешь поделиться дополнительной информацией про системные платы Надеюсь, что теперь ты понял что такое системные платы, шины, интерфейсы, материнская плата, системная плата, архитектура материнской платы, структурная схема материнской платы, северный мост, южный мост и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Информатика

    Источник https://obrazovanie-gid.ru/referaty/arhitektura-sistemnoj-platy-referat.html

    Источник https://intellect.icu/sistemnaya-plata-shiny-interfejsy-arkhitektura-materinskoj-platy-649

    Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *